Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Screening mutant libraries (MLs) of bacteria for strains with specific phenotypes is often a slow and laborious process that requires assessment of tens of thousands of individual cell colonies after plating and culturing on solid media. In this report, we develop a three-dimensional, photodegradable hydrogel interface designed to dramatically improve the throughput of ML screening by combining high-density cell culture with precision extraction and the recovery of individual, microscale colonies for follow-up genetic and phenotypic characterization. ML populations are first added to a hydrogel precursor solution consisting of polyethylene glycol (PEG) o-nitrobenzyl diacrylate and PEG-tetrathiol macromers, where they become encapsulated into 13 μm thick hydrogel layers at a density of 90 cells/mm^2, enabling parallel monitoring of 2.8 × 10^4 mutants per hydrogel. Encapsulated cells remain confined within the elastic matrix during culture, allowing one to track individual cells that grow into small, stable microcolonies (45 ± 4 μm in diameter) over the course of 72 h. Colonies with rare growth profiles can then be identified, extracted, and recovered from the hydrogel in a sequential manner and with minimal damage using a high-resolution, 365 nm patterned light source. The light pattern can be varied to release motile cells, cellular aggregates, or microcolonies encapsulated in protective PEG coatings. To access the benefits of this approach for ML screening, an Agrobacterium tumefaciens C58 transposon ML was screened for rare, resistant mutants able to grow in the presence of cell free culture media from Rhizobium rhizogenes K84, a well-known inhibitor of C58 cell growth. Subsequent genomic analysis of rare cells (9/28,000) that developed into microcolonies identified that seven of the resistant strains had mutations in the acc locus of the Ti plasmid. These observations are consistent with past research demonstrating that the disruption of this locus confers resistance to agrocin 84, an inhibitory molecule produced by K84. The high-throughput nature of the screen allows the A. tumefaciens genome (approximately 5.6 Mbps) to be screened to saturation in a single experimental trial, compared to hundreds of platings required by conventional plating approaches. As a miniaturized version of the gold-standard plating assay, this materials-based approach offers a simple, inexpensive, and highly translational screening technique that does not require microfluidic devices or complex liquid handling steps. The approach is readily adaptable to other applications that require isolation and study of rare or phenotypically pure cell populations.more » « less
-
null (Ed.)Abstract Plant, soil, and aquatic microbiomes interact, but scientists often study them independently. Integrating knowledge across these traditionally separate subdisciplines will generate better understanding of microbial ecological properties. Interactions among plant, soil, and aquatic microbiomes, as well as anthropogenic factors, influence important ecosystem processes, including greenhouse gas fluxes, crop production, nonnative species control, and nutrient flux from terrestrial to aquatic habitats. Terrestrial microbiomes influence nutrient retention and particle movement, thereby influencing the composition and functioning of aquatic microbiomes, which, themselves, govern water quality, and the potential for harmful algal blooms. Understanding how microbiomes drive links among terrestrial (plant and soil) and aquatic habitats will inform management decisions influencing ecosystem services. In the present article, we synthesize knowledge of microbiomes from traditionally disparate fields and how they mediate connections across physically separated systems. We identify knowledge gaps currently limiting our abilities to actualize microbiome management approaches for addressing environmental problems and optimize ecosystem services.more » « less
An official website of the United States government
